

取扱説明書

ガンマ線、ベータ線サーベイメーター AT6130

ガンマ線サーベイメーター AT6130A AT6130D

版: 20240406 - 41 - 20240606

©2024 ATOMTEX

著作権:無断複製を禁じます。著作権法に基づく許可がある場合を除いて、転載禁止、不許複製・禁無断転載、禁無断 転載です。トレードマーク ATOMTEX® は ATOMTEX によって登録されています。その他のトレードマーク Microsoft® and Windows® は Microsoft Corporation によって登録されています。その他の商品、サービス名は他の 権利者によって所有されています。ATOMTEX による継続的な商品の改良に一部の機能が変更になる場合もあります が、主要な仕様、機能には影響を与えません。よってすべての仕様や動作は変更になる場合があります。

内容

1	はじめに	5
1.1	線量計の取り扱いにおける注意点	5
2	仕様	6
2.1	AT6130 シリーズ	6
2.2	外観 – AT6130	7
2.3	外観 – AT6130A, AT6130D	8
2.4	フィル夕窓	9
2.5	フィルタ窓の開閉	9
2.6	商標とシール	10
2.7	動作条件	10
2.8	校正時の測定条件	10
2.9	測定性能	11
2.10) 対応規格	11
2.11	ベータ線の感度	12
2.12	2 方向特性	12
2.	12.1 方向特性 ¹⁰⁹ Cd ガンマ線源(22keV)の場合 (AT6130)	12
2.	12.2 方向特性 ²⁴¹ Am ガンマ源(59.5keV)の場合	12
2.	12.3 方向特性 ¹³⁷ Cs (662keV)、 ⁶⁰ Co(1250keV)ガンマ線源の場合	12
2.13	3 寸法・重さ	13
2.14	固有相対誤差	13
2.15	5 警告発動の設定	13
2.16	5 測定値の記録保存	14
2.17	' 起動と電源	14
2.18	3 耐久条件	14
2.19	9 相対許容誤差	15
2.20) 輸送・梱包に対する耐久性	15
2.21	その他	15
2.22	2 付属品	16
3	使い始める前に	17
3.1	重要	17
3.2	電池	17
3.3	電池の入れ方	18

3.4	電源の ON/OFF	18
3.5	起動と終了	18
3.6	電池残量	19
3.7	エラー表示	19
3.8	ボタン操作音の ON・OFF	19
4	使い方	
4.1	メニュー	20
4.2	メニューへの入り方	20
4.3	メニュー内での位置	21
4.4	メニュー内でのボタン操作	21
4.5	メニューの中身	22
4.6	メニュー	23
4.7	AT6130 のメニュー(ガンマ線測定の時)	23
4.8	AT6130 のメニュー(ベータ線測定)	24
4.9	AT6130A, AT6130D のメニュー (ガンマ線測定モード)	25
5	線量率の測定	26
5.1	線量率モードの表示方法	26
5.2	警告値を止める	26
5.3	偏差(%)	27
5.4	測定のリセット	28
5.5	線量率の警告発動	29
5.6	線量率の最大測定範囲を超えた場合の警告	29
6	積算線量の測定	
6.1	積算線量モードの表示方法	30
6.2	積算線量のリセット	31
6.3	積算線量の警告発動	31
6.4	積算線量の最大測定範囲を超えた場合の警告	32
6.5	線量率と積算線量が同時に測定範囲を超えた場合の警告	32
7	ベータ線の表面汚染密度の測定	
7.1	表面汚染の測定単位	
7.2	運用上の介入レベル OIL	
7.3	表面汚染測定値の自動換算	35
7.4	表面汚染密度の測定	

7.5	第1段階:ガンマ線の背景放射線の測定	
7.6	背景放射線の測定結果を見る方法	
7.7	第2段階:ベータ線の表面汚染密度の測定(Bq/cm ²)	
7.8	表面汚染密度のリセット	
7.9	第2段階:ベータ線の表面汚染の測定(カウント)	41
7.10	カウント率のリセット	
7.11	背景放射線の測定頻度	43
7.12	測定時間	44
7.13	2つのモード	44
8	警告発動値の設定	45
8.1	警告値を止める	45
8.2	 警告発動値の初期設定値	
8.3	過大線量の時の警告	
8.4	警告発動値の設定	
8.4	4.1 線量率の警告設定	
8.4	4.2 積算線量の警告設定	
8.4	4.3 表面汚染密度の警告設定(AT6130)	
8.4	4.4 カウント率の警告設定(AT6130)	
8.5	警告発動値の値を変更する	
9	探索モード	49
0.1		40
9.1	探索モートのしくみ	
9.2	抹糸モートをナ順	5U
9.3		
9.4	休系モートの奉牟旭	52
10	自動保存モード	53
10.1	自動保存モードの動作	
10.2	自動保存モードの結果を見る	55
11	メモ帳モード	56
וון	メモ帳の記録データの表示	56
11.7	メモ帳の記録データの削除	57 הד
ייי. 11 כ	メモ帳の記録データの消去	۲۵. جم
11.0		
12	時間と日付の設定	

13	言語の設定	61
14 B	Bluetooth 通信	61
15	保管	62
16	メンテナンス	62
16.1	除染	62
16.2	故障かなと思ったら	63
16.3	メンテナンス	63
17	付録	64
17.1	付録 A	64
17.2	付録 B	65
17.3	付録 C	66
17.3	3.1 a)AT6130	66
17.3	3.2 b)AT6130A, AT6130D	67
17.4	付録 D	68
17.5	表の見方	68
17.6	付録 E	72
17.6	6.1 放射線障害防止法	72
17.6	6.2 電離放射線障害防止規則	72
17.6	6.3 運輸則	72
17.6	6.4 運用上の介入レベル (OIL)	72

1 はじめに

ATOMTEX の検知器をお買い上げ頂き、誠にありがとうございます。

1.1 線量計の取り扱いにおける注意点

- 長期間、利用しない場合には電池を抜いてください。
 電池を入れっぱなしにすると、電池の液漏れにより内部回路に深刻なダメージを与える可能性があります。電池の液もれによる故障は、保証修理の対象外あり、修理費用が高くなることがあります。
- 測定器は動作可能な温度範囲でお使いください。
 AT6130 : -20 度~+55 度
 AT6130A : -20 度~+55 度(電源ON時), -40 度~+55 度(電源OFF時)
 AT6130D : -20 度~+55 度
- 真夏に車の中に検知器を放置しないでください。
 高温の状態になると検出器は、深刻なダメージを受けます。
 このような検出器の不具合は保証の対象外です。
- その他、落下や水没などにも注意してください。
 これらの原因による破損、動作不良は保証の対象外です。

2 仕様

2.1 AT6130 シリーズ

AT6130には、3種類あります。

この取扱説明書では、3 機種について説明しています。 購入された型番に応じた説明を見てください。

1	AT6130	β線表面汚染+γ線サーベイメーターの複合機種
		 ・ガンマ線の1cm 周辺線量当量率の測定 H[*](10) ・ガンマ線の1cm 周辺線量当量の測定 H[*](10) ・ガンマ線のカウント率の測定 ・ベータ線の表面汚染の測定 (Bq/cm²) ・ベータ線のカウント率の測定 (cpm) ・放射線源の探索 (cps)
2	AT6130A	 𝑔線サーベイメーター ・ガンマ線の 1cm 周辺線量当量率の測定 H[*]*(10) ・ガンマ線の 1cm 周辺線量当量の測定 H*(10) ・ガンマ線のカウント率の測定 (cps) ・放射線源の探索 (cps)
3	AT6130D	 r線サーベイメーター(高線量対応版) ガンマ線の1cm 周辺線量当量率の測定 H[*]*(10) ガンマ線の1cm 周辺線量当量の測定 H*(10) ガンマ線のカウント率の測定 (cps) 放射線源の探索 (cps)

パソコンとの Bluetooth 接続機能は、特注で追加することができます。 3 機種の中では AT6130 のみがベータ線を測定できます。この取扱説明書では、AT6130 にだけ関わるところには、このアイコンが付いています。 AT6130 のみ

2.2 外観 – AT6130

放射線測定器は、埃、水滴、衝撃などに耐えられるアルミニウム製ボディでできています。 上下は PVC 素材で覆われています。

🗵 2-1

表側

- ・ 液晶画面 (1)
- ・ LED ライト (2)
- ・ ボタン (3)

上端カバー

- ・ スピーカー開口部 (7) 🛛 📢
- ・ ヘッドフォン接続部 (6) 🛛 🎧

背面側

- ・ 検出器の中心点 (4)マーク
- ・ ラベル (5)

底面カバー

- ・ 電池を入れる部分のフタ(8)
- ・ 電池の方向の図 (9)

2.3 外観 - AT6130A, AT6130D

🗵 2-2

2.4 フィルタ窓

AT6130 は、ベータ線とガンマ線の2つの線種を測定でき ます。AT6130 の背面には金属フィルタがついており、開 閉することができます。

AT6130 のみ

金属フィルタでベータ線を遮断できる性能があります。フィルタ窓は、図 2-3のように開きます。

図 2-3

金属フィルタを閉じる	金属を通り抜けられるのは、ガンマ線だけであるためガンマ 線だけの測定になります。ベータ線は遮断されます。
金属フィルタを開く	薄いポリマー蒸着フィルムだけの膜になります。この膜は、ベ ータ線、ガンマ線が通り抜けられます。そのためベータ線+ガ ンマ線の合計の測定になります。

窓を開くと円形の検出窓があり、金網とポリマー蒸着フィルムで覆われています。

この膜は、鋭利なものや、強い力で押さないでください。

膜が破れると修理が必要になります。

測定中にこのフィルタが汚れた場合には、慎重に汚れを拭き取ってください。

2.5 フィルタ窓の開閉 AT6130 のみ

AT6130 は、フィルタを開けると自動で測定モードが切り替わります。

フィルタを閉じると、	ガンマ線の線量率の測定
フィルタを開けると、	ベータ線の表面汚染密度の測定(Bq/cm²)

フィルタを開け閉めすると、すぐに動作モードが切り替わるようになっています。

2.6 商標とシール

放射線測定器の商標は、前面と背面にあります。

全面	メーカー名
	型番
背面	測定器の技術的な特徴
	シリアル番号
	製造年月日
	防水性能 IP 57
	認証マーク
	製造国名

2.7 動作条件

温度	AT6130	-20 °C ~ +55°C
	AT6130D	
	AT6130A	-20 ℃ ~ +55℃ (画面表示 ON)
		-40 ℃ ~ +55℃ (画面表示 OFF)
相対湿度(35°C」	以下, 結露なし)	95%以下
気圧		84kPa ~ 106.7 kPa
磁場強度		400A/m 以下

2.8 校正時の測定条件

温度	15 °C ∼ 25 °C
湿度	30% ~ 80%
気圧	86kPa ~ 106.7kPa
防水・防塵(IEC 規格 529:89)	IP57
その他	爆発物のある環境では利用できません。

2.9 測定性能

AT6130A の測定範囲の上限を広げた機種が、AT6130D になります。

	AT6130	AT6130A	AT6130D
検出器	ガイ	イガーカウンター検出	出器
X線・ガンマ線	0.1µSv/h~10mSv/h		0.1µSv/h∼
lcm 線量当量率の範囲			100mSv/h
X線・ガンマ線の	0.1µSv~100mSv		0.1µSv∼1Sv
lcm 線量当量			
(積算線量)の測定範囲			
検出された X 線とガンマ	20 keV~3 MeV	50 keV	~3 MeV
線のエネルギー範囲			

	AT6130 (表面汚染タイプ)
ベータ線表面汚染密度	$0.0 \sim 2,000 \text{ Bq/cm}^2$
ベータ線カウント率	0~2 · 10 ⁶ cpm

エネルギー依存性	±30%
(¹³⁷ Cs 662keV に対する比率)	
ベータ線のエネルギー範囲(AT6130)	155~ 3,540 keV
ガンマ線の線量率の測定時間	300 秒以下
自然放射線量(0.1μSv/h)において	
偏差±20%以下となる測定時間	

2.10 対応規格

国際規格	AT6130A : IEC 60846-1:2009	
	AT6130D: IEC 60846-1:2009	
	AT6130 : IEC 60325	
電気計測器の安全規格	IEC 61010-1:2001	
	クラス 機器用 (汚染度 1、設置区分)	

2.11 ベータ線の感度

放射性核種⁹⁰Sr+⁹⁰Yからのベータ線の感度は、表 2-1です。 AT6130のエネルギー依存性の図は[17.2 付録 B (p.65)]です。

表 2-1

放射線核種	ベータ粒子最大値	相対感度
	エネルギー, keV	
¹⁴ C	156.0	0.03 ± 0.02
¹⁴⁷ Pm	224.5	0.18 ± 0.04
⁶⁰ Co	317.9	0.40 ± 0.08
²⁰⁴ TI	763.4	1.30 ± 0.20
¹⁰⁶ Ru+ ¹⁰⁶ Rh	39.4 (¹⁰⁶ Ru)	0.80 ± 0.12
	3540 (¹⁰⁶ Rh)	
⁹⁰ Sr+ ⁹⁰ Y	546 (⁹⁰ Sr)	1.0
	2274 (⁹⁰ Y)	

2.12 方向特性

放射線測定器は、ガンマ放射線の入射角によって感度が変化します。 角度による方向特性は、こちらです。

2.12.1 方向特性¹⁰⁹Cd ガンマ線源(22keV)の場合 (AT6130)

$0^{\circ} \sim \pm 45^{\circ}$	±50%
$\pm 45^{\circ} \sim \pm 60^{\circ}$	±70%
$\pm 60^{\circ} \sim \pm 180^{\circ}$	未定義

2.12.2 方向特性²⁴¹Am ガンマ源(59.5keV)の場合

$0^{\circ} \sim \pm 45^{\circ}$	±40%
$\pm 45^{\circ} \sim \pm 60^{\circ}$	±60%
$\pm 60^{\circ} \sim \pm 90^{\circ}$	±65%
$\pm 90^{\circ} \sim \pm 180^{\circ}$	未定義

2.12.3 方向特性¹³⁷Cs (662keV)、⁶⁰Co(1250keV)ガンマ線源の場合

$0^{\circ} \sim \pm 45^{\circ}$	±20%
$\pm 45^{\circ} \sim \pm 60^{\circ}$	±25%
$\pm 60^{\circ} \sim \pm 90^{\circ}$	±40%
$\pm 90^{\circ} \sim \pm 180^{\circ}$	±50%

方向特性については、[17.3 付録 C (p.66)]も参考にしてください。

2.13 寸法・重さ

寸法	110mm × 60mm × 38mm
寸法(輸送時の箱こみ)	146mm×130mm×76mm 以下
重さ	0.25kg
重さ(輸送時の箱こみ)	0.5kg 以下

2.14 固有相対誤差

X線・ガンマ線の線量率測定、積算線量測定の固有相対誤差	±20%
ベータ線測定の表面汚染に対する固有相対誤差	±20%

固有相対誤差は、工場で生産される多数の同機種の測定器間のばらつきに関する誤差の最 大値です。この誤差が±20% という数字になっていますが、すべての測定器の個体がそれ ほど誤差の大きい個体であることは、示していません。実際には記載の数字の半分程度に収 まるように生産されていますが、万が一を考えて固有相対誤差は大きめの表記となってい ます。

2.15 警告発動の設定

- ・ 線量率(Sv/h)、積算線量(Sv)、表面汚染密度(Bq/cm²)、表面汚染カウント率(CPM)に対して警告発動値を設定できます。
- ・ 設定できる範囲は、測定範囲です。
- ・ 警告発動値を超えた場合と、測定範囲の最大値を超えた場合に警告が発動します。
- ・ 測定器は、測定上限の100倍の値に対して5分間耐えることができます。

2.16 測定値の記録保存

測定器内部には、不揮発性の保存メモリが搭載されています。 保存メモリに、今現在の測定値を保存することができます。 最大 1,000 個の測定値を記録できます。

測定値を保存する方法には、2タイプがあります。 詳しくは、各説明の章を見てください。

内部保存メモリは、こちらの2つの機能に使われています。

メモ帳モード	ボタンを押した瞬間の測定値を内部メモリに保存します。
自動モード	6 秒、60 秒、600 秒ごとに自動で線量率を保存するモードです。

2.17 起動と電源

単四電池2本で利用できる時間は 500 時間です。

連続使用時間	500 時間
24 時間連続動作での誤差	±5%以下

2.18 耐久条件

	AT6130	AT6130D	AT6130A
温度	−20°C ~+55°C		-20°C~55°C
			(画面表示 ON)
			-40°C~+55°C
			(画面表示
			OFF)
湿度(結露無し、35℃以下)	95%まで		
大気圧範囲	84kPa~106.7kPa		
正弦波振動	10Hz~55Hz 周波数範囲		
	シフト振幅は 0.35mm		
1度の機械的な衝撃	ピーク加速度 50m/s2		
衝撃の継続時間	0.5ms~30ms		
磁場	400 A/m		
防水·防塵(IEC 規格 529:89)	IP57		

2.19 相対許容誤差

温度(動作温度範囲内)	±10%
湿度(通常から 95%まで変化した場合,結露なし)	±10%
電源の変化(2V – 3.3V へ変化)	±5%
正弦振動の変化(10 – 55 Hz の変化)	±5%

2.20 輸送・梱包に対する耐久性

	AT6130	AT6130D	AT6130A
温度	-20°C	~+55°C	-40°C~+55°C
湿度	100% (40°C)まで		
衝擊加速度	XYZ 軸における 98m/s² (10g) の衝撃加速度、16ms の衝撃持続		
	時間、および 1000 ± 10 回の衝撃まで		

2.21 その他

- ・ 防水性があるため、測定器自体の除染を行うことができます。
- ・ 放射線測定器の試験、保管、 輸送、操作、および廃棄は環境に害がありません。
- ・ 放射線測定器の静電気に対する耐性は、IEC 61326-1:1997 および IEC 61000-4-2:2008の要件、試験レベル 3、および性能基準 A に準拠しています.
- ・ 放射線測定器の無線周波数の電磁界に対する耐性は、IEC 61326-1:1997 および IEC 61000-4-3:2008の要件、試験レベル 2 および性能基準 A に準拠しています。
- ・ 放射線測定器の無線周波干渉のレベルは、クラスB機器 (グループ 1)の EN
 55011:2009の標準制限を超えません。
- ・ 平均寿命が 20 年以上です(故障しない期間ではありません)
- ・ 放射線測定器は電池式です (1.5V の単四電池 2 個)。1.2V の充電式の単四電池 2 個 も使用できます。 通常の背景放射線では、3V の公称電圧で放射線測定器が消費する平 均電流は、2.2mA 以下です。
- ・ 放射線測定器には、電池の充電レベルを監視し、電池残量を警告する機能があります。

2.22 付属品

表 2-2

名称	個数	備考
1 放射線測定器	1	
2 バッテリー	2	単4電池 (動作テスト用)
3 "Reader_AT6130"		Bluetooth 通信機能がある場合のみ
ソフトウェア*		
4 付属品		
充電式電池		オプション
充電器		オプション
ヘッドフォン		オプション
ホルスター	1	
ホルダー		オプション
USB フラッシュドライブ		オプション
5 取扱説明書	1	
6 パッケージ	J	
注意事項		

1 Bluetooth 通信機能オプションの有無は本体の背面ラベルに記載。

2 「Reader_AT6130」ソフトウェアは、USB メモリでも提供可能(有償)。

3 使い始める前に

3.1 重要

- ・ 周囲に酸、アルカリ蒸気、危険なガスおよびその他の腐食性有害物質がないことを確認 してください。
- ・ 放射線測定器を使用する前に取扱説明書を読んでください。
- ・ 購入後や、長期保管後は、放射線測定器本体の外観に目に見える機械的損傷がないか、 ボタンなどの印が読み取れるかを確認してください。

3.2 電池

単4乾電池2本が必要です。

- ・ 測定器を長期間に保管する場合には、必ず電池を抜いてください。電池が液漏れを起こ すと、測定器が故障します。電池の液漏れの修理代金は比較的高くなります。
- ・ 無くなりかけの電池を使うことはおすすめしません。新しい電池を入れることで、すべての動作が正しくなります。
- ・ 故障したか、と思うような動作になった場合には、最初に電池を新しいものに交換してください。電圧の低下した電池は、測定器の挙動を不安定にすることがあります。

3.3 電池の入れ方

測定器の底面のバッテリーボックスのフタを 外してください。フタはネジになっており、 逆時計回りに回すことで開きます。

電池の+側を先頭にして入れてから、フタを はめてください。

測定器の電源の入れ方は、[3.4 電源の ON/OFF (p.18)] を参考にしてください。

フタを外して 電池を入れてください

3.4 電源の ON/OFF

- 測定器の電源を ON にするには、ボタン ①を1回押します。
- 電源を OFF にするには、すばやく①ボタンを3回押します

測定器は測定モードでのみ電源を OFF にすることができます。

3.5 起動と終了

電源が入ると、以下の順番で測定器の起動が進みます。

- 1. ボタン①を1回押します。
- 2. "ATOMTEX"のメッセージが表示されます。
- 3. ファームウェアのバージョンが表示されます。
- 4. 自己診断テストが行われ検出器の動作がチェックされます。
- 5. その後、3~5秒で測定モードが起動されます。

電源を切る場合には、以下の順番となります。

- 1. すばやく ①ボタンを3回押します。
- 2. モニター画面に"OFF"のメッセージが表示されます。
- 3. 放射線測定器は実行中のすべての操作を終了し、1~2秒で電源が切れます。

18

3.6 電池残量

放射線測定器には、電池残量チェック機能があります。画面上の電池マークは、電池残量に 応じて徐々に消えます。3 区画のすべてが消えると、100 秒ごとにアラームが鳴ります。電 池を交換してください。

バッテリーが完全に消耗すると、「電池なし」というメッセージが表示され、測定器が停止 します。

3.7 エラー表示

操作中に「Err xx」メッセージが表示された場合 (xx はエラーコード番号の略)には、測定 器が故障しています。これ以上の操作はできません。販売店、メーカーに連絡を取ってくだ さい。

3.8 ボタン操作音の ON・OFF

ボタン操作音を OFF にするには、電源 ON 後に**ロ**▲ボタンを押してください。

4 使い方

4.1 メニュー

測定器には、メニューがあります。 メニューから機能(モード)を切り替えることで、測定方法・動作を変更できます。

4.2 メニューへの入り方

メニューボタン**印**圖を長押ししてください。 メニューを開いている間でも、測定は内部で継続しています。

印圖 ボタン	測定モードで、 印圖 ボタンを長押しすると
	メニューに入ることができます。

4.3 メニュー内での位置

メニュー内では、現在、選択されている項目の先頭に、┡の印(カーソルと呼ぶ)が付いて います。カーソルを上下ボタンで動かすことでメニュー内の選択を切り替えることができ ます。

•	メニューは、上下に広がった構造になっており、
	点滅したカーソル 🕨 が選択できる位置を示しています。

4.4 メニュー内でのボタン操作

メニューは、上下に広がった構造になっています。 ボタン **ゴ**▲ と [★]▼ を使って移動してください。

	ボタン	メニュー内を上に移動する。
☆∣▼	ボタン	メニュー内を下に移動する。
Û	ボタン	カーソル 🕨 で選択されたメニューに入っていく場合。
	ボタン	メニュー内では、ボタン 🂴 は「キャンセル」の意味合いがあ
		り、一つ前のメニューに戻ることができます。

4.5 メニューの中身

メニューの中にある機能をご紹介します。

モード	線量率の測定、積算線量の測定など
	よく使うメニューは、「モード」の
	中にあります。
けいこく	ー定の放射線量になったら警告アラームを発動させる、といった場合には、 こちらで設定できます。
ХŦ	ボタン操作で今現在の線量率などを内部メモリに保存したものを見るため
	の画面です。
設定	時間、日付の設定です。

4.6 メニュー

測定器は、型番ごとにメニュー内容が異なります。 お使いの機種の型番(機器の裏面に記載)を確認して、該当ページを見てください。

1	AT6130	ガンマ線の測定の時	p.23
	(表面汚染タイプ)	ベータ線の表面汚染密度の測定の時	p.24
2	AT6130A	ガンマ線の測定	p.25
3	AT6130D	ガンマ線の測定(測定範囲の拡大版)	p.25

4.7 AT6130のメニュー(ガンマ線測定の時)

AT6130(表面汚染密度タイプ)の背面のフィルタが閉じている場合で、ガンマ線測定モードの時のメニュー構成です。

Ð-	ド		メニューモードの一番上の階層
⊨	線量率		線量率
→	積算線量…		積算線量
→	背景放射線	Į	背景放射線
	→ 測定		背景放射線の測定
	→ 表示		背景放射線の測定結果
Ļ	自動保存		自動データ保存ダイアグラムモード
	→測定		自動データ保存ダイアグラムモードの測定
	→ 表示		自動データ保存ダイアグラムモードの測定結果
けい	いこく		警告発動値の設定
⊨	線量率		線量率の警告発動値の設定
┝	積算線量…		積算線量の警告発動値の設定
Ļ	表面汚染		表面汚染密度の警告発動値の設定
×₹	-		メモ帳機能
⊨	読む		メモ帳の読込
→	消す		メモ帳の削除
L)	クリア		メモ帳の全消去
設定	È		設定
⊨	時間		時間の設定
	日付		日付の設定
	言語		言語の設定
Ļ	Bluetooth	(搭載機種のみ)	Bluetooth 接続モード

4.8 AT6130のメニュー(ベータ線測定)

AT6130(表面汚染密度タイプ)の背面のフィルタが開いている場合で、ベータ線測定モードのメニュー構成です。

Ŧ−	ド	 メニューモードの一番上の階層
	表面汚染	 表面汚染密度
•	カウント	 入射窓面積20㎝相当の計数率
•	探索	 探索
けい	こく	 警告発動値の設定
⇒ i	線量率	 線量率の警告発動値の設定
	積算線量	 積算線量の警告発動値の設定
•	表面汚染	 表面汚染密度の警告発動値の設定
•	カウント	 カウント率の警告発動値の設定
ХŦ	-	 メモ帳機能
_ ⊢ =		
Г ^г	読む	 メモ帳の読込
	読む 消す	 メモ帳の読込 メモ帳の削除
	読む 消す クリア	 メモ帳の読込 メモ帳の削除 メモ帳の全消去
いたので、「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	読む 消す クリア E	 メモ帳の読込 メモ帳の削除 メモ帳の全消去 設定
C→ 注 設 定	読む 消す クリア E 時間	 メモ帳の読込 メモ帳の削除 メモ帳の全消去 設定 時間の設定
Ţ ⇒ ジ 2 定 →	読む 消す クリア Magentary 目でした。 日付した。	 メモ帳の読込 メモ帳の削除 メモ帳の全消去 設定 時間の設定 日付の設定
F ⇒ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷	読む	 メモ帳の読込 メモ帳の削除 メモ帳の全消去 設定 時間の設定 日付の設定 言語の設定

4.9 AT6130A, AT6130D のメニュー (ガンマ線測定モード)

AT6130A と AT6130D のメニュー構成です。

モード		メニューモードの一番上の階層
→線量率		線量率
➡積算線量		積算線量
⇒探索		探索
➡ 自動保存		自動データ保存ダイアグラムモード
→測定		自動データ保存ダイアグラムモードの測定
→表示		自動データ保存ダイアグラムモードの測定結果
けいこく		警告発動値の設定
→線量率		線量率の警告発動値の設定
➡積算線量		積算線量の警告発動値の設定
メモ		メモ帳機能
⇒読む		メモ帳の読込
⇒消す		メモ帳の削除
▶ クリア		メモ帳の全消去
設定		設定
→時間		時間の設定
→日付		日付の設定
→言語		言語の設定
Bluetoot	h (搭載機種のみ)	Bluetooth 接続モード

5 線量率の測定

5.1 線量率モードの表示方法

線量率の測定を表示するには、最初にメニューボタン **印** を長押しして、 [モード]-[線量率] と選択します。

線量率表示モードでは、現在の線量率値(µSv/h、 mSv/h)と偏差(%)が表示されます。

5.2 警告値を止める

警告音を停止するには、**ロ**▲ボタンを押してください。 **ロ**▲ボタンを押すと警告音は止まりますが、画面内の 掌アイコンは点滅表示されたままとなります。

現在の時刻、日付	右上に表示
電池残量	左上に表示
רבד 🔶	測定器が動作中を示しています。
	点滅します(2秒に1回)
偏差(%)	下段・中央

5.3 偏差(%)

液晶の右下の数字[%]は、偏差(%)=統計誤差です。 1~200 %の値が表示されますが、この偏差(%)には、こちらの表のような意味合いがあ ります。

偏差の値	意味合い
偏差(%)の値が大きい	・ 測定時間が短いため、より長い時間測定してください。
30~100%	・ 周りの放射線量がふらふらと変動している
	・急に放射線量が変化した
偏差(%)の値が小さい	・十分な測定時間、測定できているので表示される線量率を
1~30%	正しい値として読むことができる。
	・ 周りの放射線量の変動が少なく安定している。

右の図では、測定値 1.0μ Sv/h 、偏差 25%の状態を示しています。偏差 25%と いう場合には、 1.0μ Sv/h を中心に± 25% = ± 0.25 μ Sv/h の幅がある、と いう意味になります。つまり 0.75 ~ 1.25 μ Sv/h の範囲です。

放射線量は、出たり出なかったりと確率的 に変動しています。測定器は、時間をかけ

て何度も放射線を測定しながら平均値を計算しています。同時のばらつきの範囲から、95% の確率ですべての測定値が収まるような幅を「偏差(%)」として計算します。

放射線量が時間的に変動していない場所であれば、測定の平均値は一定の値に近づいてい きます。同時に測定時間を長くすると、偏差の値(%)は25%、20%、15%と小さくなっ てきます。偏差の幅が小さいということは、環境の放射線量が一定の値で安定しているとい う意味になります。偏差(%)が30%以下の時に平均値の値を読むことで、おおよそ正確 な線量率の測定ができます。

周りの放射線量が時間的に大きく変動している時、たとえば車で移動しながら測定する場 合には周りの放射線量が大きく変化するため、偏差(%)は時間をかけて測定しても十分に 下がらない場合もあります。偏差が下がらない場合には、周りの放射線量が変化していると 理解することができます。この場合には、平均値と偏差(%)の両方の値を記録しておくの がよい方法となります。

5.4 測定のリセット

線量率は、一定時間で平均化された値です。たとえば車の中で測定を行っていて、急に車外 に出た場合には、車の中で測定した測定値を引きずっているということが発生します。

このように「場所」を移動したときには、「平均値のリセット」を行い、その場所の放射線 量を0から測り直してください。

- 平均値のリセットは、線量率モードで Ů ボタンを短く押します。
- 0µSv/h が表示された後、偏差が 200%が表示されます。

平均値がリセットされたことで、偏差(%)が一時的に大きく表示されます。ですが時間の 経過とともに偏差(%)の値は再び小さくなっていきます。しばらく待って偏差が 30%以 下になったらその場所の放射線量が正しく測定できている、ということが言えます。

場所を移動する場合に限らず、いつでも再測定を行いたい場合には、平均値のリセットを行ってください。平均値がリセットは、その場所の放射線量を正しく測定するためによく使う 方法です。

5.5 線量率の警告発動

測定器を稼働中に、線量率に対する警告発動値を超えると警告動作が発動します。 警告発動値を変更するには「警告発動値の設定 p.45」を見てください。 設定した警告発動値を超える放射線量が検出されると、以下の警告動作が発動します。

(警告動作)

- 警告音 (5 回の短い音と無音期間) が繰り返し鳴ります。
- 画面には点滅するアイコン掌が表示されます。
- 積算線量に対する警告発動値も一定値を超えた場合、2つの警告音が交互に鳴ります。

5.6 線量率の最大測定範囲を超えた場合の警告

線量率の最大測定範囲を超えた場合には、以下の動作になります。

- 画面に「OL mSv/h」というメッセージ表示。
- 連続した警告音と光が発動。

6 積算線量の測定

6.1 積算線量モードの表示方法

積算線量は、活動時間中の合計の被ばくを示す量です。

作業開始前の0にリセットして作業を行い、作業完了後に積算線量を確認すれば、1日分の 被ばく量を知ることができます。積算線量は、1ヶ月、1年といった長期間でも測定するこ とができます。

積算線量の測定を表示するには、こちらの手順です。 最初にメニューボタン **口**圖 を長押しして、[モード]-[積算線量] と選択します。

積算線量の表示モードでは、現在の積算線量が表示されます。 測定単位は、nSv、μSv、mSv です。

6.2 積算線量のリセット

積算線量を0にリセットするには、0ボタンを押してください。 積算線量は、⁰ボタンひとつだけで0にリセットされてしまうため操作に注意してください。

6.3 積算線量の警告発動

積算線量に対する警告発動値を超えると警告動作が発動します。 警告発動値を変更するには「警告発動値の設定 p.45」を見てください。 設定した警告発動値を超える放射線量が検出されると、以下の警告動作が発動します。

(警告動作)

- 警告音(2回の短い音と無音期間)が繰り返し鳴ります。
- 画面には点滅するアイコン■が表示されます。
- 線量率に対する警告発動値も一定値を超えた場合、2つの警告音が交互に鳴ります。

6.4 積算線量の最大測定範囲を超えた場合の警告

積算線量の最大測定範囲を超えた場合には、以下の動作になります。

- 画面に「OL mSv」または「OL Sv」というメッセージ表示。
- 連続した警告音と光が発動。

6.5 線量率と積算線量が同時に測定範囲を超えた場合の警告

積算線量モードにいる状態で、積算線量と線量率が同時に測定範囲を超えた場合には、以下 の動作になります。

● 「OL Dose Rate」メッセージが表示されます。

AT6130 のみ

7 ベータ線の表面汚染密度の測定

7.1 表面汚染の測定単位

表面汚染密度は、Bq/cm²、または CPM の単位で測定できます。

Bq/cm ²	Bq(ベクレル)という単位は、ある物体から1秒間に出てくる放射線の
	くる放射線の総数を数えたものが Bq という単位です。物体から1秒間に
	100 個の放射線が、毎秒出てくる場合には、100 Bq と表現します。
	Bq/cm2 という単位の場合、1cm² (単位面積)から出てくる毎秒でてく
	る放射線の総数という意味になります。
СРМ	CPM は、毎分あたりのカウント数です。Count Per Minute の頭文字をと
	って CPM と記載します。この単位は、放射線を出すある物体の近くに測
	定器を置いたときに、その測定器が捕まえることができた放射線の個数(=
	カウント数)です。放射線測定器は、ある物体の全周の放射線を捕まえるこ
	とはできないため、Bq 単位より必ず小さくなります。CPM の測定値は、
	大きな検出器を使うと大きな値になります。小さい測定器を使った場合や、
	放射線を捕まえる能力が低い場合には、さらに小さい値になります。CPM
	の測定値は、放射線測定器の大きさ、検出器の体積、測定能力、メーカーに
	よってバラバラの値となります。

2つの単位を比べてみると同じ放射線源であれば、 Bq/cm²の方は、どの測定器で測定しても同じ値になると言えます。これは、Bq が物理的な単位であるためです。

一方 CPM の方は、放射線測定器の性能や、形状の大きさによって変わるため、物理的な 単位ではなく、とりあえず測定器が捕まえることができた数、というような意味合いにな ります。

AT6130 のみ

7.2 運用上の介入レベル OIL

日本では原子力災害対策指針が定める緊急事態の防護措置として「運用上の介入レベル (OIL)」が定義されています。これは原子力災害などの緊急時に、避難してくる人や、車両 を除染すべきかどうかの判断として表面汚染を測定する基準を OIL 4 として定義していま す。

	CPM 単位	Bq/cm ² 単位	
OIL4	β線: 40,000 cpm	120 Bq/cm ²	
除染基準	(災害発生直後のみ使用)		
	β線: 13,000 cpm	40 Bq/cm ²	
	(災害発生から1ヶ月後から使用)		
20cm ² の検出窓を持つ GM 管で測定した場合のカウント率(CPM)を元にして算出する			

OIL4 では、除染基準が CPM 単位で定義されています。同じ除染基準を Bq/cm² にした 場合には、120, 40 Bq/cm² となります。

CPM 単位では、ヨウ素 131(¹³¹I)の表面汚染 120 Bq/cm²、40 Bq/cm²の表面汚染を 20 cm²の検出窓を GM 管検出器で測定した場合のカウント数を、それぞれ 40,000 CPM, 13,000 CPM として定義されています。

どちらの単位で測定しても同じ除染基準の判断となります。 AT6130 表面汚染サーベイメ ータは、どちらの単位でも測定できるようになっています。

7.3 表面汚染測定値の自動換算

OIL4 の指針では、20cm² の検出窓をもつ測定器で CPM 値を測定することになっていま す。ですが、AT6130 の検出窓は、20cm²よりも小さい検出面積です。そのため面積の比 と、検出効率での換算が必要となります。

AT6130 はこの換算を内部で自動的に行う機能が搭載されており、測定値をそのまま読む だけで、OIL4 除染基準での測定ができます。表示される CPM 値は、20cm²の GM 管で 測定した換算値となっています。

Bq/cm ²	こちらは物理量であるため換算なしで、AT6130 で表示された値をそのま ま利用できます。OIL4 基準で測定したい場合には、120 Bq/cm ² または 40 Bq/cm ² を除染基準と考えて測定してください。
СРМ	こちらは、AT6130 に表示される表面汚染の CPM 値は、20cm ² の検出 窓を持つ GM 管で測定した値に換算された値になっています。換算表なし で、画面に表示された値をそのまま 40,000 cpm または 13,000 cpm を 除染基準と考えて測定してください。
7.4 表面汚染密度の測定

表面汚染密度の測定は、2段階の測定で行われます。

段階(1)	ガンマ線の 背景放射線の測定	背面フィルタを閉じてガンマ線の背景放射線量(r) を測定する。この作業は、最初に一度だけ行う作業で す。たとえば除染を行う場所で、毎朝1回行うだけの 作業となります。
		この測定は時間をかけて行ってください。目標は偏差 10%以下になるまで待ってください。
段階(2)	ベータ線の 表面汚染密度の測 定	背面フィルタを開いて、ベータ線で汚染された線源に 近づけて測定する。フィルタが開かれているため、(γ +β)の放射線量が測定されます。
結果の表示	内部で自動的に 演算します。	段階 (1) (2) の2つの測定の差分を次式で計算する ことで、ベータ線の放射線量だけが表示されます。 $(\gamma+eta)-(\gamma)=(eta)$
		この計算は、測定器内部で常時行われており、測定器 の画面にはベータ線の測定値が常に表示されます。

7.5 第1段階:ガンマ線の背景放射線の測定

表面汚染密度(Bq/cm²)または表面汚染カウント数(CPM)での測定は、2段階の手順で行われます。

第1段階では、測定を行う場所の背景放射線量(ガンマ線)の測定を行います。

手順はこちらです。

- 実際にベータ線を測定する場所の近くで、おおよそ測定する向きで測定器を固定 するか、テーブルの上に置いて測定を行ってください。できるだけ時間をかけて 測定することで、次に行うベータ線の測定時間を大幅に短縮できる効果があるた め、手に持たずに長時間測定できる位置を探してください。
- 背面のフィルタを閉じてください。これは重要です。
 これでガンマ線の測定できるようになります。
- 3. メニューボタン **口** を長押しして、[モード]-[背景放射線]-[測定] と選択します。 これで測定が始まります。

ガンマ線の背景放射線の測定モードでは、現在の背景放射線値(cps カウント値:s⁻¹) と偏差 (%)が表示されます。測定が開始されたら、時間をかけて測定を行い、偏差(%) の値が小さくなるまで測定してください。単位 s⁻¹ は毎秒という意味があります。

- 偏差は時間をかけると値が小さくなりますが目標は10%以下です。第1段階(ガンマ線の背景放射線の測定)に時間をかけるほど、次に測定するベータ線による 表面汚染密度の測定時間も短くなります。そのためできるだけ長い時間測定を行ってください。
- 2. 偏差(%)の値が 10%以下、あるいはさらに小さい値になったら、ボタン **印** を押してその場所の背景放射線量を測定器に記憶させます。[OK]の文字が表示さ れます。

測定中にボタン **口**〇 で何度でも記録させることができます。できるだけ時間を かけて測定してください。これでガンマ線の背景放射線の測定は終了です。

場所を移動しない限りは、この作業は毎朝1回だけ行えばよい作業となり ます。もし場所を移動しながら測定するのであれば、場所を移動する度 に、背景放射線量(ガンマ線)の測定が必要となります。

背景放射線量(ガンマ線)の測定中に、もう一度、最初から測定し直す場合には、**①**ボ タンを押してください。再測定が必要なければ、ここは無視してください。

7.6 背景放射線の測定結果を見る方法

保存された背景放射線量(ガンマ線)の測定値を見る方法は、こちらです。

- 1. 背面のフィルタを閉じて、ガンマ線が測定できるようにします。
- 2. メニューボタン 印圖 を長押しして、[モード]-[背景放射線]-[表示] と選択します。

7.7 第2段階:ベータ線の表面汚染密度の測定(Bq/cm²)

表面汚染密度(Bq/cm²)を測定するには、2段階で行われます。 2段階目では、放射線によって汚染された表面に測定器を近づけて、ベータ線を測定します。

もし、この時点でガンマ線の測定(第1段階)が終わっていない場合には、

表面汚染密度の測定手順は、こちらです。

Г

背面フィルタを開きます。
 測定器 AT6130 は自動的にベータ線の表面汚染密度の測定モードに移行します。

背面フィルタを開いていれば、表面汚染密度モードに自動的に切り替わりますが、切り 替わっていない場合にはメニューボタン **口** を長押しして、[モード]-[表面汚染] と 選択します。

ここで表示される値は、(p.36)で解説した演算 を行った結果であるため、ベータ線だけの放射線 の強さを示しています。ガンマ線は自動的に差し 引かれています。

$$(\gamma + \beta) - (\gamma) = (\beta)$$

- 表面汚染密度モードが開始されたら、 測定する表面から 15mm (誤差±3mm)の距離で測定器を固定してください。
- 3. そのまま時間をかけて測定すると、偏差(%)の値が下がってきます。10~30%の値 になれば、おおよそ正確な値として読み取ることができます。

測定器中に放射線の大きな変化があると、自動的に新しい表面汚染密度の測定が開始され ます。この時、ライトが点灯し音が鳴ります。この場合には、再び偏差(%)の値が下がる まで待ってください。

7.8 表面汚染密度のリセット

表面汚染密度をリセットするには**心**ボタンを押してください。 すぐに偏差が 50%程度まで戻り、内部の平均された測定値が破棄されて、新しい測定が始 まります。

このリセットは、たとえばある人の体表面を測定しているときに最初は、体を測定していた が、やはり腕を測定したいと考えたといった場合で使ってください。

あるいはしばらく測定してみて測定距離が 15mm を保てなかったといった場合もリセットして再測定することで、過去の測定値を完全に廃棄して新しい測定を行うことができる 機能となっています。

7.9 第2段階:ベータ線の表面汚染の測定(カウント)

CPM 単位でも表面汚染を測定できます。

もし、この時点でガンマ線の測定(第 1 段階)が終わっていない場合には、 「

2段階目では、放射線によって汚染された表面に測定器を近づけて、ベータ線を測定します。 表面汚染の測定手順は、こちらです。

- 背面フィルタを開きます。
 測定器 AT6130 は自動的にベータ線の表面汚染密度の測定モードに移行します。
- 2. CPM 単位 (カウントモード) で測定する場合には、メニューボタン **印** を長押しして、[モード]-[カウント] と選択します。

ここで表示される値は、(p.36)で解説した演算を行った結果であるため、ベータ線だけの放射線の強さを示しています。ガンマ線は自動的に差し引かれています。

$$(\gamma + \beta) - (\gamma) = (\beta)$$

- カウントモードが開始されたら、 測定する表面から 15mm (誤差±3mm)の距離で測定器を固定してください。
- 4. そのまま時間をかけて測定すると、偏差(%)の値が下がってきます。10~30%の値 になれば、おおよそ正確な値として読み取ることができます。

測定器中に放射線の大きな変化があると、自動的に新しいカウントの測定が開始されます。 この時、ライトが点灯し音が鳴ります。この場合には、再び偏差(%)の値が下がるまで待 ってください。

7.10 カウント率のリセット

カウント率をリセットするには**心**ボタンを押してください。 すぐに偏差が 50%程度まで戻り、内部の平均された測定値が破棄されて、新しい測定が始 まります。

このリセットは、たとえばある人の体表面を測定しているときに最初は、体を測定していた が、やはり腕を測定したいと考えたといった場合で使ってください。

あるいはしばらく測定してみて測定距離が 15mm を保てなかったといった場合もリセットして再測定することで、過去の測定値を完全に廃棄して新しい測定を行うことができる 機能となっています。

7.11 背景放射線の測定頻度

第1段階の測定(背景放射線の測定)は、測定場所を変えた場合には毎回測定してください。

たとえば、ある場所の流れ作業で多人数の衣服の表面を測るような場合には、朝の作業開始 前に背景放射線を1度測定すれば、その日は全員の衣服の表面汚染密度を測定することが できます。

ですが、測定場所を大きく変えて屋内から室内での検査に切り替えた場合には、改めて室内の背景放射線量の測定をしなければなりません。第1段階の測定(背景放射線の測定 p.37)を、もう一度、計り直してください。

その他、車で移動しながらいろいろな場所の表面汚染密度を測定するような場合には、毎回、 背景放射線の測定が必要となります。場所を移動した場合には、必ず背景放射線の測定を行 ってから、ベータ線の表面汚染密度(Bq/cm²)、表面汚染カウント数(CPM)の測定を行っ てください。

背景放射線の測定を行うときには、背面のフィルタを閉じることを忘れないでください。

7.12 測定時間

表面汚染密度の測定(p.36)の測定方法において、 第 1 段階のガンマ線の測定に時間をかけると、 第 2 段階のベータ線では測定時間が大幅に短縮される、という法則があります。

第1段階の背景放射線の測定は、時間をかけて偏差の数字が10%以下になるまで行って ください。放射線量が高い場所では偏差の数字が5%以下になるまで待つこともできます が時間がかかりすぎる場合には、10%以下になるまで待ってください。

7.13 2つのモード

こちらの2つのモードは、独立して稼働します。そのため警告発動値の設定も独立して稼働します。

表面汚染モード	測定単位 Bq/cm ²
カウントモード	測定単位 CPM

第1段階のガンマ線の測定結果は共通で使うことができます。

測定器はモードの設定を保持しています。フィルタ窓を開けると前回に選択した測定単位 の表示モードになります。

8 警告発動値の設定

設定した測定値以上の放射線量を検出した場合には、警告が発動します。 警告動作では、ライト点灯、警告音、画面に警告アイコン^単が表示されます。

線量率に対する警告音	5回の短い音+無音期間の繰り返し
積算線量に対する警告音	2回の短い音+無音期間の繰り返し
表面汚染密度に対する警告音	5回の短い音+無音期間の繰り返し
表面汚染カウント率に対する警告音	2回の短い音+無音期間の繰り返し

線量率、積算線量、表面汚染、カウント率に対する警告発動は、それぞれ独立して発動しま す。両方の警告発動値が同時に超えた場合には、2 種類のアラームが鳴ります。

測定器で設定できる警告発動値の範囲は、測定器の測定範囲と同じです。測定範囲は、仕様 (p.11)を見てください。

8.1 警告値を止める

警告音を停止するには、��▲ボタンを押してください。

■▲ボタンを押すと警告音は止まりますが、画面内の^単アイコンは点滅表示されたままとなります。

8.2 警告発動値の初期設定値

線量率	30µSv/h
積算線量	180µSv
表面汚染密度	40 Bq/cm ²
カウント率	13,000 CPM (40 Bq/cm² 相当)

測定値に対する警告発動の設定値は、測定器の内部メモリに保存されています。これらの設 定値は、測定器の電源を切っても保存されています。

8.3 過大線量の時の警告

測定器の測定できる最大範囲を超えた場合にも音の警告、表示の警告が発動します。

8.4 警告発動値の設定

測定値に対する警告発動値の設定は、メニューから設定を変更することができます。

警告発動値の設定中は、画面にアイコン 升 が表示されます。

設定手順はこちらです。

8.4.1 線量率の警告設定 線量率に対する警告の場合には、メニューボタン **印** を長押しして、 [けいこく]-[線量率] と選択します。

8.4.2 積算線量の警告設定

積算線量に対する警告の場合には、メニューボタン **印** を長押しして、 [けいこく]-[積算線量] と選択します。

8.4.3 表面汚染密度の警告設定(AT6130)

ベータ線の表面汚染密度に対する警告の場合には、メニューボタン **印** を長押しして、 [けいこく]-[表面汚染] と選択します。

8.4.4 カウント率の警告設定(AT6130)

ベータ線の表面汚染密度に対する警告の場合には、メニューボタン **印** を長押しして、 [けいこく]-[カウント率] と選択します。

8.5 警告発動値の値を変更する

測定値に対する警告発動値の設定画面では、変更できる値が点滅します。

™ ft	15:51 22.09.21		
30)_() µSv/h		
	せってい	<u></u> \$ ▼	

この画面では、3 が点滅しています。

- ・ ��▲と☆ ▼の2つのボタンで、点滅している数字を変更することができます
- ・ 隣の桁や、単位に移動する場合には、**①**ボタンを使います。
- ・ 小数点の位置や最後の桁まで確定して終えると、測定器は値を記録保存します。 これで一つ上のメニューへ自動的に戻ります。
- ・ 値の変更中に**口**目ボタンを押すと、値は保存されずにメニューへ戻ります。 値を保存する場合には、**①**ボタンを押して、設定を最後まで終えてください。

9 探索モード

9.1 探索モードのしくみ

探索モードは、放射線が高くなると警告音がより強く、より高頻度で鳴るモードです。警告 音の強さを聞きながら、放射線の強い場所を体感的に探すことができます。

探索モードの警告音は、電源を入れた場所や、基準となる放射線量と比較して、放射線が強 ければ音が強くなる、という仕組みです。

たとえば、公園の入り口に到着して測定器の電源を入れると、この場所が「基準値」となり ます。公園の中を歩いて回り、放射線量がより強い場所になると警告音がより強く、より頻 度が高くなるように鳴ります。この時、基準地点との比較で音が強くなります。

警告音が最大となった地点が見つかったら、放射線が高いその場所を「基準値」として再設 定します。その後は、さらに強い放射線の場所でしか警告音が鳴りません。これを繰り返し ていくことで公園の中で、最も放射線量が強い場所を探していくことができます。

この線量計には、あらかじめ設定した線量率になったら警告音が鳴る、という形式の警告ア ラームも搭載されています(線量率に対する警告)。このタイプの警告は、仮に 3 µ Sv/h で 警告音を鳴らすと決めた場合には、それに到達しない限りは、線量率に対する警告音は一度 も鳴りません。

一方で、探索モードの警告音は、放射線が変化すると、音の強さも変化します。行ったこと がない場所で放射線の強い場所に注意したい、といった場面では、探索モードの警告音の方 が体感的に放射線の強さを理解しやすくなります。

型番	ガンマ線の探索	ベータ線の探索
AT6130	-	O
AT6130A	Ø	-
AT6130D	O	-

型番によって探索モードの動作が異なります。

9.2 探索モードを手順

探索モードを使うには、最初に今いる場所の放射線量(カウント率)を測定器に記憶させるこ とから始めてください。この値が「基準値」となり、この放射線量より少し高いところで自 動的に警告音が鳴るようになります。

(手順)

- 今いる場所の放射線量を「基準値」として測定器に記憶させる。
 探索モードを利用中に [^印] ボタンを押すだけです。
- 2. しばらく歩いて、放射線の高いところで自動的に警告音が鳴る。
- 3. さらに歩いて、警告音が最大になったら再び、その場所を「基準値」として測定器 に記憶させる。探索モードを利用中に [^印]ボタンを押すだけです。
- 4. さらに歩いて、警告音の高いところを探す。
- 5. という手順をくり返すことで、周辺で最も放射線量の高い場所を見つけることが できます。
- 6. 最後にその場所の「線量率」を測定して人間への被ばく度合いを把握します。

9.3 探索モードを使う

メニューボタン 印圖 を長押しして、[モード]-[探索] と選択します。

● AT6130 ではベータ線の探索が可能です。ガンマ線の探索はできません。フィルタ窓 を開けてください。

探索モードでは、アナログメーターと、下段にカウント率 (s⁻¹)が画面に表示されます。 単位 s⁻¹ は毎秒という意味があります。

カウント率(s⁻¹)の測定は、平均化は行われておらず、毎2 秒おきに値が更新されています。平均化されない値なの で、放射線の変化に対して即座に値が反応します。

アナログメーターは、基準値からの差が表示されていま す。メーターの幅は、放射線の大きさによって ±10、 ±100、±1000、±10000 (s⁻¹) の範囲で変化します。

🗵 9-1

メーターが+を示す	基準値の場所より放射線が強い
メーターがーを示す	基準値の場所より放射線が低い

探索モードは、放射線の強さに応じて音の頻度(強さ)が変わることで、音の強さをたより にして体感的に放射線の強さを知るためのモードです。音の頻度は、メーターの大きさによ って変わります。

9.4 探索モードの基準値

探索モードを利用中に [凹圖]ボタンを押すと、測定器は、今いるその場所の放射線量を基準として記憶します。これにより探索モードは、より強い放射線がある場所でしか音が鳴らなくなります。

放射線が強い場所(音アラームが激しく鳴る場所)を見つけたら、その場所で ^{凹圖} ボタン を押して、測定器にその場所の放射線を覚えさせてください。さらに探索を続けることで、 より放射線が強い場所が見つかる可能性があります。

放射線が強い場所に近づくと、アナログメーターは、+の方向に増加します。放射線源に近 づくと、警告音は鳴りっぱなしになり、メーターは右側(+)いっぱいまで広がります。

メーターが(+)いっぱいになる場所が見つかったら再度、⁰⁰ ボタンを押して放射線量を 覚えさせ探索を続けます。

基準値の再設定を行うと、アナログメーターの横軸の目盛りが切り替わり、警告音などは控 えめになります。これは、この場所の放射線量を測定器が記憶したことを意味しています。 より高い放射線量の場所で音が鳴るようになります。これを繰り返すことで最終的にその 周辺でもっとも放射線が強い場所を探すことができます。

逆に放射線源から遠ざかり、放射線量が下がるとメーターは、左側(-)側に大きくなりま す。このようにメーターと音を頼りにして、放射線が強い場所を探すことができます。

放射線量が極端に強い場合には、画面表示は過大入力を示す OL s⁻¹ や±10000 の表示となります。

探索モードでの警告音は、**『**ボタンを押すと消えます。この場合には表示メーターを見ながら、探索を続けることができます。またヘッドフォンを接続するとヘッドフォンで音を聞くこともできます。

10 自動保存モード

自動保存モードでは、線量率の測定値を一定時間ごとに、自動で連続保存することができます。

自動保存モードでは、1000 件まで保存できます。メモリの上限値である 1000 件まで保存 されると、その後 100 秒間の間、ボタン操作がない場合は自動的に電源が OFF となりま す。

線量率の保存時間の間隔は、あらかじめ決まっていて6秒、60秒、600秒から選ぶことが できます。600秒の自動モードでの測定結果の蓄積にかかる最長時間は166時間です。

1. メニューボタン 印圖 を長押しして、[モード]-[自動保存]-[測定] と選択します。

2. 測定時間の間隔を設定するモードに移行します。

ボタン 【▲と楽 ▼ボタンを押して6秒、60秒、600秒から値を選びます。

3. ①ボタンを押して測定開始します。これで自動保存が開始されます。

4. 印圖ボタンを押すと、測定を開始せずに、一つ前のメニューに戻ります。

10.1 自動保存モードの動作

自動保存モードの測定が開始されると、画面はこちらのようになります。

図 10-1

- ・ 図の棒グラフは、測定値の大きさを示しています。図の棒グラフは左から右に進みます。
 棒グラフの高さは対数スケールでの線量率の測定値を示しています。
- ・ 三角形のアイコン ▲ は点滅しています。
 この▲位置の測定値が、数字として下部に表示されます。
- ・ボタン□□■を押すと測定が一時中断できます。この間、▲ アイコンは点滅しません。再 開するには、再度ボタン□□■を押すと、測定が再開されます。
- ・ 測定を終了するには、以下の3つの方法があります。
 - ◆ 放射線測定器の電源が OFF にする
 - ◆ 他の測定モードに切り替える
 - ◆ 1,000 件の測定結果がメモリに書き込まれるまで放置する
- ボタン
 ・ボタン
 <l

すべての測定データは、自動保存モードを再スタートするまで測定器内部に保存されます。 自動保存モードを使用中は、線量率、積算線量の測定は内部で継続して行われますが、警告 アラームは無効となります。

10.2 自動保存モードの結果を見る

自動保存モードで記録されている測定値の確認は、こちらからです。

5. メニューボタン 印圖 を長押しして、[モード]-[自動保存]-[表示] と選択します。

測定値が保存されていない場合、「から(空)」メッセージが短時間表示されます。 保存された測定値がある場合は、放射線測定器は最新の記録から表示を開始します。

- 前後の記録を確認するには
 ▲と
 ペーボタンを押します(長押し又は繰り返し押す)。
- ・ 表示するモードでは、▲ アイコンが点滅しておらず、これは測定モードではなく表示モードを示しています。
- ・ 自動保存モードに戻るには印圖ボタンを押します。

-20°C以下の温度で自動保存モードを使うことができますが、-20°C以下では液晶画面がうまく表示されません。

11 メモ帳モード

メモ帳モードでは、測定器の不揮発性メモリ内に最大 1000 件まで線量、線量率、表面汚染 密度の測定結果を保存できます。測定結果は日付と時刻のデータが含まれます。測定器の電 源を切っても保存データは失われません。

測定中に¹⁰¹⁸ボタンを短く押すと、その測定値がメモリに保存されます。 画面には記録番号が表示され、**501**アイコンが表示されます。

保存できるメモリのすべて(最大 1000 件)が使われると、「いっぱい」のメッセージが表示 されます。

11.1 メモ帳の記録データの表示

メモ帳に保存記録された値は、測定器のメインメニュー[メモ]-[読む]から確認できます。

メモ帳に記録がない場合、"から(空)"のメッセージが短 く表示されます。メモ帳にデータがある場合には、最新の 記録から表示し始めます。

・ トーマンは、メモの読み取り中であることを示しています。

- メモ帳モードに戻るには^{□□}「「タンを押します。

11.2 メモ帳の記録データの削除

測定器のメインメニュー[メモ]-[消す]から特定のメモ帳のデータを削除できます。

メモ帳内に記録がなければ、"から(空)"のメッセージが短時間表示されます。 メモ帳が空でなければ、最新の記録から表示し始めます。 ▶ アイコンは、メモの読み取り中であることを示しています。

「削除?」のメッセージは、削除モードにいる状態を示しており、メッセージを削除できる ことを示します。

- ・ 前後の記録を確認するには���▲と☆▼ボタンを押します(長押し又は繰り返し押す)。
- ・ メモ帳から特定の記録を削除するには、
 ●ボタンを押します。
- メモ帳モードに戻るには^回
 ボタンを押します。

11.3 メモ帳の記録データの消去

測定器のメインメニュー[メモ]-[クリア]から、 メモ帳に保存されたすべてのデータを消去できます。

メモ帳から全記録を消去している間、測定器の画面には「・・・」のメッセージが表示され ます。

12 時間と日付の設定

測定器は、内部に時計があり、時間と日付を保持しています。

時計機能は、測定器の電源が OFF の状態でも稼働しています。電池を交換した場合には、 日時情報が失われますので、再度設定してください。

 メニューボタン □□ を長押しして、[モード]-[設定]-[時間]または[日付] と選択 します。

編集モードでは、次のような順番で数字が表示されます。

時間	(時:分:秒)	の順番
日付	(日:月:年)	の順番

点滅箇所が編集できる部分になります。

- ・ボタン �� ▲と☆ ▼を押して数字を変えてください。
- 次の桁に移るには、
 ①ボタンを押してください。
- ・最後の値(時間の場合は秒、日付の場合は年)を入力すると、設定された時間・日付情報を保存 して設定メニューに戻ります。
- ・最後まで設定を行うと、新しい時間・日付が保存されます。
- ・新しい時間または日付を入力せずに、設定メニューに戻るには 印圖 ボタンを長押しします。

測定器の表示言語を選択できます。

日本語を選択してください。 選択を確定するには、①ボタンを押します。 放射線測定器の言語を変更せずに設定メニューに戻るには、**叩**圖 ボタンを押します。

14 Bluetooth 通信

特注で Bluetooth 接続機能を追加した場合には、パソコンと測定器を Bluetooth 無線で接続できます。測定器内部のデータなどをパソコンに転送することができます。

無線通信チャンネルは Bluetooth 2.0 技術に対応し、ポイント・ツー・ポイントモードでの 短距離接続(最大 1m)に使用できます。

パソコン用のソフトウェアは、付属品の USB メモリディスク内にあります。 Bluetooth 機能の ON/OFF には、放射線測定器のメニューから設定します。

ボタン ① を押して Bluetooth 機能を ON/OFF してください。変更せずに設定メニューに 戻るには 印圖ボタンを押します。

【注意】 バッテリーの電力を節約するには、データ送信時のみワイヤレス接続機能を有効に してください。

15 保管

測定器は購入時のパッケージに入れた状態で保管してください。 保管条件はこちらです。

- ・ 温度 20°Cから 55°C
- ・ 湿度 95%以下(35℃、結露していない)
- 粉塵、酸およびアルカリ蒸気、腐食性のガス、その他腐食性不純物を含むものは、大気
 1型(通常の清浄)の腐食物質の含有量を超えないようにしてください。

16 メンテナンス

16.1 除染

測定器が、放射性物質を含む埃、土砂などで汚れた場合には、測定器を除染してください。 精留された工業用エチルアルコールに浸した布で測定器からほこりや汚れを取り除きます。 除染作業完了後、測定器は15分で作動可能になります。 アルコール消費量は10mlです。

16.2 故障かなと思ったら

操作中のトラブルについては、表 16-1 を参照してください。

	A 10 1	
トラブルの内容	考えられる原因	対処方法
1 画面が暗く、ボタンを押して	バッテリーが少ない	新しい電池を入れてください。
も反応しない		
2 バッテリーを交換した後、測	バッテリーの+、-が違う	適切にバッテリーを入れてくだ
定器が作動しない	CPU が故障している	さい。2、3分バッテリーを外
		し、再度入れ直してください。
3 操作中に不定期に電源が落ち	CPU が故障している	測定器の電源のオン、オフを2,
る。バッテリー残量が表示されな		3回繰り返してください。
し い 。		問題が続く場合、測定器を修理
		してください。
4 エラー表示が出る	測定器が誤作動を起こし	測定器を修理してください。
	ている	

表 16-1

16.3 メンテナンス

メンテナンスは、測定器を長時間使い続けるために必要です。少なくとも 2 週間に 1 度は 定期的な清掃を含めて点検してください。

- · 容器の損傷やマークの読みやすさなど測定器の外部をチェックしてください。
- ・ 50%の工業用エチルアルコール溶液で、メーターも含めた放射線測定器の表面からほこ りや汚れを取り除いてください。アルコール消費量は 5ml です。

17 付録

17.1 付録 A

¹³⁷Cs 放射性核種の 0.662 MeV ガンマ線を基準としたエネルギー依存性

a) AT6130

b) AT6130A, AT6130D

🗵 A.1

17.2 付録 B

AT6130 相対感度

図 17-1

17.3 付録 C

ガンマ線入射角による感度変動

17.3.2 b)AT6130A, AT6130D

17.4 付録 D

ここでは、ベータ線の表面汚染密度の測定下限値についてご紹介します。 測定下限値とは、どこまで低い放射線を測定できる能力があるか、という意味です。

ベータ線の表面汚染密度において測定下限値は測定時間を長くすることで下がり、より小 さい量の表面汚染を測定できるようになります。

ですが必要以上に長時間測定する必要は無いため、表面汚染の基準値と比較して、どれぐら いの時間をかけて測定すればよいのかを判断するための表をご紹介します。

この章の付録Dには、2タイプの表があります。

- ・偏差±20%
- ・偏差±10%

通常の測定では、偏差±20%の表を使えば十分に高精度の測定ができます。 必要な場合には、偏差±10%の表を利用してください。

17.5 表の見方

横方向は、偏差 10%まで待ってガンマ線の背景放射線を測定したときの時間(分) 縦方向は、ベータ線の表面汚染測定に必要となる時間(分)が示されています。

φ _N , Bq/cm², 偏差 ±10 %													
t _{BKGR} , 分 t _φ ,分	1	2	3	4	5	6	7	8	9	10	15		
1	5.7	5.6	5.6	5.6	5.6	5.6	5.6	5.5	5.5	5.5	5.5		
2	3.3	3.1	3.0	3.0	3.0	2.9	2.9	2.9	2.9	2.9	2.9		
3	2.5	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.1	2.0	2.0		
4	2.1	1.8	1.8	1.7	1.7	1.7	1.6	1.6	1.6	1.6	1.6		
5	1.9	1.6	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.3	1.3		
6	1.7	1.5	1.4	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.1		

低い表面汚染密度の測定を行う場合に必要な背景放射線量の測定時間、 測定時間、測定限界の関係性

もう少し具体的に手順を見てみます。

- 1. 最初に国の指針や法律などを調査して、ご自身の目的に合う表面汚染の基準値を調べておくのがよいです。日本の法律、規制で定義された基準値は、(17.6 付録 E p.72) にまとめてあります。
- 2. たとえば 4 Bq/kg が表面汚染の基準値である場合を考えてみます。 これより表面汚染が低ければ、汚染なし、と判断できます。
- 最初にガンマ線の背景放射線を測定します。
 ここで偏差 10% に達するまでの時間をストップウォッチで計測します。
 この測定に5分かかったとすると、表の横方向(T_{BKGR})の数値で「5」のところを見ます。

φ _N , Bq/cm ² , 偏差 ±10											
t _{BKGR} ,分 t _φ ,分	1	2	3	4	5	6	7	8			
1	5.7	5.6	5.6	5.6	5.6	5.6	5.6	5.5	5		
2	3.3	3.1	3.0	3.0	3.0	2.9	2.9	2.9	2		
3	2.5	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2		
	0.1	10	10				10	10	-		

- 「5」のところを見ると、5.6, 3.0, 2.1..と数字が並びます。
 今回の表面汚染の基準値は 4.0 Bq/kg であるため、3.0 Bq/kg まで測定できれば十分と言えます。
- 5. そこで 3.0 Bq/kg の横軸を見ると、2分となります。 つまりベータ線の表面汚染密度には、2分以上かける必要があることが分かります。

低い表面汚染密度の測定を行う場合に必要な背景放射線量の測定時間、

測定時間、測定限界の関係性

30	5.5	2.9	2.0	1.6	1.3	۲.۱	1.0	0.9	0.8	0.8	0.6	0.5	0.4	0.4
25	5.5	2.9	2.0	1.6	1.3	١.١	1.0	0.9	0.8	0.8	0.6	0.5	0.4	0.4
20	5.5	2.9	2.0	1.6	1.3	۱.۱	1.0	0.9	0.8	0.8	0.6	0.5	0.5	0.4
15	5.5	2.9	2.0	1.6	1.3	۱.۱	1.0	0.9	0.9	0.8	0.6	0.5	0.5	0.5
10	5.5	2.9	2.0	1.6	1.3	1.2	۱.۱	1.0	0.9	0.8	0.7	0.6	0.5	0.5
ത	5.5	2.9	2.1	J.6	1.4	1.2	۱.۱	1.0	0.9	0.9	0.7	0.6	0.6	0.5
ω	5.5	2.9	2.1	1.6	1.4	J.2	۱.۱	1.0	0.9	0.9	0.7	0.6	0.6	0.5
2	5.6	2.9	2.1	1.6	1.4	1.2	۱.۱	1.0	0.9	0.9	0.7	0.6	0.6	0.6
Q	5.6	2.9	2.1	٦.7	1.4	1.2	۱.۱	1.0	1.0	0.9	0.7	0.7	0.6	0.6
വ	5.6	3.0	2.1	1.7	1.4	1.3	۱.۱	۱.۱	1.0	0.9	0.8	0.7	0.7	0.6
4	5.6	3.0	2.1	٦.7	1.5	1.3	1.2	۲.۱	1.0	1.0	0.8	0.8	0.7	0.7
ო	5.6	3.0	2.2	1.8	1.5	1.4	1.2	1.2	۱.۱	۱.۱	0.9	0.8	0.8	0.8
2	5.6	3.1	2.2	1.8	1.6	1.5	1.4	1.3	1.2	1.2	1.0	1.0	0.9	0.9
-	5.7	3.3	2.5	2.1	1.9	1.7	1.6	1.6	1.5	1.5	1.4	1.3	1.3	J.2
t _{ewan} ,分 t _e ,分	_	2	ſ	4	Ъ	9	7	Ø	б	10	15	20	25	30
	t _{ev} , 3 t _{even} , 3 t _{even} , 4 5 6 7 8 9 10 15 20 25 30	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tender tender	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} t_{\rm becon}, \dot{\dot{A}} \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 15 & 20 & 25 & 30 \\ 1 & 5.7 & 5.6 & 5.6 & 5.6 & 5.6 & 5.6 & 5.5 & 5.5 & 5.5 & 5.5 & 5.5 & 5.5 & 5.5 \\ 2 & 3.3 & 3.1 & 3.0 & 3.0 & 3.0 & 2.9 & 2.9 & 2.9 & 2.9 & 2.9 & 2.9 & 2.9 & 2.9 \\ 2 & 3 & 2.5 & 2.2 & 2.1 & 2.1 & 2.1 & 2.1 & 2.1 & 2.1 & 2.1 & 2.0 & 2.0 & 2.0 & 2.0 \\ 2 & 4 & 2.1 & 1.8 & 1.8 & 1.7 & 1.7 & 1.6 & 1.0 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	tube tube tube tube tube T 8 9 10 15 20 25 30 tube 1 5.7 5.6 5.6 5.6 5.6 5.5	$t_{0.501}$ $t_{0.601}$ $t_{0.611}$

				Φ _N , E	3q/cn	1 ² , 1	偏差:	±20	%					
t _{eken} , min L _e , min		2	က	4	വ	9	7	ω	റ	10	15	20	25	30
-	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.5	1.5
2	ן.ן	1.0	9.5	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
က	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6
4	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ð	0.8	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4
9	0.7	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
7	0.7	0.6	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
ω	0.7	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3
თ	0.7	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3
10	0.7	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3
15	0.6	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
20	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2
25	0.6	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
30	0.6	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2
備考														
ゆ ^N − ベータ線・表	面汚染?	密度の測	這下限	値										
t _{ekce} – 背景放射線c	の測定時	寺間												
t _e -ベーク線・表ū	面汚染癌	密度の測	定時間											
17.6 付録E

国内の法律、規制などで定義された表面汚染の測定値を紹介いたします。

17.6.1 放射線障害防止法

放射線管理区域を定義する放射能表面密度(Bq/cm²)の下限値。

β ・ γ 線核種	40 Bq/cm ²
α線核種	4 Bq/cm ²

放射線管理区域から持ち出しするああいの放射能表面密度(Bq/cm²)の下限値。

β ・ γ 線核種	4 Bq/cm ²
α線核種	0.4 Bq/cm ²

17.6.2 電離放射線障害防止規則

労働者の保護具、作業衣の表面汚染を定義。

作業着が労働者に直接触れる部分は、この数値のさらに 1/10 。

$eta \cdot r$ 線核種	40 Bq/cm ²
α線核種	4 Bq/cm ²

17.6.3 運輸則

L型輸送物の基準

表面の線量率	5μSv/h
放射能表面密度	4 Bq/cm ²

17.6.4 運用上の介入レベル (OIL)

OIL4 不注意な経口接種、皮膚汚染から内部被ばくを防止するため除染を講じる基準

避難直後の値	120 Bq/cm ² (40000cpm)
1ヶ月後の値	40 Bq/cm ² (13000cpm)